







# Solo

## Le premier système de purification d'eau de laboratoire au monde utilisant des cartouches réutilisables.

Eau ultra-pure de laboratoire directement à partir de l'eau du robinet – jusqu'à 10 litres par jour d'eau de type 1.

#### Une durabilité inégalée

- La conception unique de la cartouche permet de réutiliser cette dernière, d'éliminer les déchets des cartouches plastiques et de réduire de 90 % les émissions de carbone.
- Le milieu de traitement peut être recyclé dans le cadre d'un plan AvRecycle™.
- Boîtier de la cartouche fabriqué à partir de matériaux 100 % recyclables.

## Certification verte par évaluation de la conception

- La technologie UV LED de contrôle des bactéries sans mercure élimine le problème en aval de la gestion des déchets de mercure.
- Solo S™ est livré dans un emballage sans plastique, certifié FSC, conçu pour la durabilité.
- La conception révolutionnaire de la pompe et le circuit d'écoulement de la membrane d'osmose inverse permettent de maintenir la qualité de l'eau tout en réduisant la consommation d'énergie et d'eau.
- Passage automatique en mode économie d'énergie après une période d'inactivité, réduisant davantage la consommation d'énergie.



Solo S™ est livré dans un emballage exempt de plastique, conçu pour la durabilité.

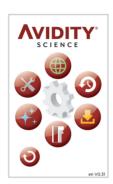
### Solo S™ - Un niveau de durabilité supérieur

#### AvRecvcle™ est un système de cartouches de purification d'eau réutilisables et recyclables le premier du genre dans le domaine de la purification d'eau en laboratoire.

- La conception révolutionnaire de la cartouche de consommables, sans colle ni soudure, permet de séparer complètement le milieu interne du boîtier externe.
- Les consommables annuels peuvent être renvoyés à Avidity Science pour être retraités - et non jetés.
- Le processus complet de recyclage des consommables consiste à démonter, vidanger et nettoyer les cartouches en plastique avant de les remplir à nouveau et de les tester.
- Un milieu de prétraitement innovant sans carbone pour la protection des membranes d'osmose inverse peut être rétrolavé et réutilisé.
- Toutes vos cartouches usagées renvoyées seront réutilisées. En contrepartie, vous bénéficierez d'une remise sur votre prochain achat de consommables annuels.



- Chaque paquet de consommables annuals est fourni avec une boîte de retour pour simplifierl'emballage du produit usagé.
- Renseignez un simple formulaire de retour en ligne via un code QR pour obtenir un numéro de suivi unique.
- Après utilisation, renvoyez les consommables usagés au centre de traitement Avidity Science le plus proche. Avidity
- Nous retraitons voscartouches retournées et vous accordons une remise valable pour votre prochain achat de


La conception unique de la cartouche offre une fonction de vidange de l'eau lors du remplacement des consommables afin d'éviter





## Solo-S™ fournit de l'eau ultra-pure en alliant facilité et intelligence





### Distribution intelligente offrant une flexibilité totale

- La génération d'eau ultra-pure délivrée à un débit pouvant atteindre 1,2 litre/minute raccourcit lesdélais de la recherche.
- La distribution volumétrique de 100 ml à 4 litres vous permet de travailler pendant que l'eau est distribuée.
- Bouton de distribution configurable pour un contrôle total lors de l'utilisation de la configuration manuelle et volumétrique.
- Le débit configurable jusqu'à une distribution goutte à goutte facilite laprécision du remplissage dans un seul récipient.







## Suivi ingénieux des données et rapports disponibles

- La Communicationen champ proche (CCP) permet l'identification des consommables et l'enregistrement sécurisé des données garantissant la traçabilité.
- Gestion des données sans papier avec technologie de carte SD
- Acquisition de donnéesrespectant la conformité réglementaire.



#### Écran tactile intuitif

- Écran couleur TFT de 5 pouces avec navigation simplifiéepar icônes
- Suivi en temps réel en plusieurs langues.
- Protection par mot de passe des fichiers des paramètres d'opérationscritiques.

#### Fonctionnement et maintenance aisés

- Le système émet des alertes lorsque les cartouchesont besoin d'être changées - l'accès est facile.
- La notification d'état du système fournit une indication visuelle de l'état de la purification de l'eau par le biais d'un bouton de distribution à code couleur.
- La détection des fuites intégrée assure la sécurité du système.
- Le processus d'assainissement semi-automatiqueest simple et sûr.









Au cours des dernières décennies, l'utilisation de plastiques à usage unique a connu une forte augmentation. La conception innovante d'Avidity Science garantit que les cartouches peuvent être réutilisées plusieurs fois pour le même usage sans compromettre vos travaux de recherche. Grâce au plan AvRecycle™, les milieux de traitement internes peuvent être recyclés, évitant ainsi la mise en décharge des déchets.

AvUltra01S

Part Number 7125-2000-001





Avidity Science a mis au point un nouveau système révolutionnaire de purification durable de l'eau qui permet d'éviter la mise au rebut de grands volumes de déchets plastiques à la décharge.



Avidity Science a intégré des cartouches entièrement réutilisables dans cette unité de purification d'eau de laboratoire – la première du genre. Les cartouches sont renvoyées à un centre Avidity Science désigné pour une inspection visuelle avant retraitement. Chaque composant est soigneusement nettoyé et validé avant d'être inclus dans le plan AvRecycle<sup>™</sup>.

## Qualité d'eau ultra-pure garantie

L'analyse a été réalisée par un prestataire de services externe accrédité ISO/CEI 17025.

RÉSULTATS\*

**Tableau 1:**Résultats relatifs aux métaux traces - Solo S™ Water **Tableau 2:**Résultats relatifs aux anions - Solo S™ Water

| RΙ | ES | UL | _T. | ΑТ | `S* |
|----|----|----|-----|----|-----|
|    |    |    |     |    |     |

| RÉSULTATS* |       |               |       |
|------------|-------|---------------|-------|
| ÉLÉMENT    | UNITÉ | Solo S™ WATER | LDM** |
| Al         | ppb   | 0,022         | 0,001 |
| Sb         | ppb   | 0,001         | 0,001 |
| As         | ppb   | 0,001         | 0,001 |
| Ва         | ppb   | 0,001         | 0,001 |
| Ве         | ppb   | 0,001         | 0,001 |
| Bi         | ppb   | 0,001         | 0,001 |
| Cr         | ppb   | 0,001         | 0,001 |
| Со         | ppb   | 0,001         | 0,001 |
| Cu         | ppb   | 0,004         | 0,001 |
| Ga         | ppb   | 0,001         | 0,001 |
| Ge         | ppb   | 0,001         | 0,001 |
| Au         | ppb   | 0,006         | 0,001 |
| Fe         | ppb   | 0,007         | 0,001 |
| Pb         | ppb   | 0,001         | 0,001 |
| Li         | ppb   | 0,001         | 0,001 |
| Mn         | ppb   | 0,007         | 0,002 |
| Мо         | ppb   | 0,001         | 0,001 |
| Ni         | ppb   | 0,005         | 0,003 |
| Nb         | ppb   | 0,001         | 0,001 |
| Pt         | ppb   | 0,001         | 0,001 |
| K          | ppb   | 0,017         | 0,001 |
| Ag         | ppb   | 0,001         | 0,001 |
| Na         | ppb   | 0,075         | 0,001 |
| Sr         | ppb   | 0,003         | 0,001 |
| Ta         | ppb   | 0,022         | 0,001 |
| TI         | ppb   | 0,001         | 0,001 |
| Sn         | ppb   | 0,001         | 0,001 |
| Ti         | ppb   | 0,015         | 0,002 |
| W          | ppb   | 0,002         | 0,001 |
| V          | ppb   | 0,001         | 0,001 |
| Zn         | ppb   | 0,079         | 0,001 |
| Zr         | ppb   | 0,007         | 0,001 |

| ANION           | UNITÉ | Solo S™ WATER | LDM** |
|-----------------|-------|---------------|-------|
| Br              | ppb   | 0,015         | 0,015 |
| F               | ppb   | 0,005         | 0,005 |
| PO <sub>4</sub> | ppb   | 0,423         | 0,010 |
| SO <sub>4</sub> | ppb   | 0,423         | 0,010 |

<sup>\*</sup>L'analyse a été réalisée au moyen de la technique IC

**Tableau 3 :**Résultats relatifs aux cations - Solo  $S^{\scriptscriptstyle\mathsf{TM}}$  Water

#### **RÉSULTATS\***

| CATION          | UNITÉ | Solo S™ WATER | LDM** |
|-----------------|-------|---------------|-------|
| NH <sub>4</sub> | ppb   | 0,144         | 0,015 |
| Li              | ppb   | 0,005         | 0,005 |
| Mg              | ppb   | 0,091         | 0,015 |
| K               | ppb   | 0,020         | 0,020 |
| Na              | ppb   | 0,075         | 0,010 |

<sup>\*</sup>L'analyse a été réalisée au moyen de la technique IC

\*\* LQ = limite de quantification

**Tableau 4 :**Résultats relatifs à la silice - Solo S™ Water

#### RÉSULTATS\*

| COMPOSÉ           |                   | UNITÉ | Solo S™ WATER | LDM** |
|-------------------|-------------------|-------|---------------|-------|
| Silice totale     | SiO <sub>2</sub>  | ppb   | 0,51          | 0,51  |
| Silice dissoute   | SiO <sub>2</sub>  | ppb   | 0,51          | 0,51  |
| Silice colloïdale | *SiO <sub>2</sub> | ppb   | 0,00          | S/O   |

<sup>\*</sup>L'analyse de la silice totale a été réalisée au moyen de la technique (évaporation) ICP-OES. L'analyse de la silice dissoute a été réalisée au moyen de la technique (évaporation) UV-VIS. La silice colloïdale est calculée comme la différence entre la silice totale et la silice dissoute. \*\*LDM = Limite de détection de la mesure

0,020

0,014

#### SOLO S™ POUR LES APPLICATIONS CRITIQUES

| ANALYSES               | SCIENCES DE LA VIE |
|------------------------|--------------------|
| IC Électrophorèse      |                    |
| ICP-MS PCR/RT-PCR      |                    |
| GC-MS Séquençage de    | ľADN               |
| HPLC Immunocytochin    | nie                |
| AA Culture de cellules | de mammifères      |
| ICP-OFS Analyse des e  | endotoxines        |

<sup>\*\*</sup> LQ = limite de quantification

<sup>\*</sup>L'analyse a été réalisée au moyen de la technique ICP-MS.

<sup>\*\*</sup>LDM = Limite de détection de la mesure

## Caractéristiques techniques

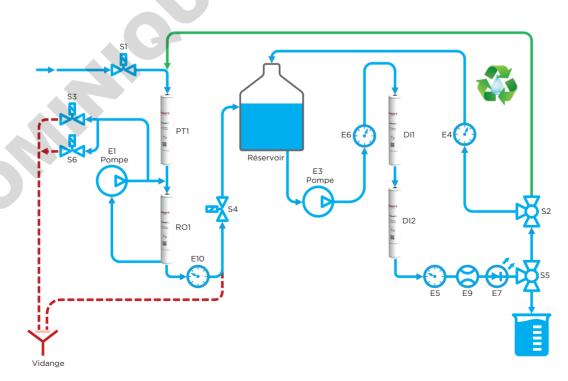
#### **EXIGENCES DU SYSTÈME**

#### CARACTÉRISTIQUES DE L'UNITÉ

| EAU D'ALIMENTATION             | Solo S™     |                 | Solo S™                                      |             |            |                  |  |  |
|--------------------------------|-------------|-----------------|----------------------------------------------|-------------|------------|------------------|--|--|
| Pression (Bar)                 | 1 à 6 max.  | (14,5 à 87 psi) | Dimensions (H x L x P) (mm/po)               | 585 x 37    | 77 X 526 / | 23 × 14.8 × 20,7 |  |  |
| pH                             | 6,5 à 8,5   |                 | Profondeur de travail (mm/po)                | 377         | /          | 14,8             |  |  |
| Dureté en CaCO (ppm)           | < 1000      |                 | Poids net (kg/lb)                            | 18          | /          | 39,68 lb         |  |  |
| Température (°C)               | 5 à 35 max. | (45 à 90 °F)    | Poids de service (kg/lb)                     | 24          | /          | 52,9 lb          |  |  |
| Conductivité*** (µS/cm)        | < 2000      |                 | Capacité interne du réservoir (Litres        | s) 4,2      |            |                  |  |  |
| Chlore libre (ppm)             | ,           |                 | Alimentation électrique - Unité              | 24 VCC      |            |                  |  |  |
| Total de solides dissous (ppm) |             |                 |                                              | 130 W (max) |            |                  |  |  |
|                                |             |                 | Alimentation électrique                      | 100 à 23    | 50 VCA ± 1 | 0 %              |  |  |
|                                |             |                 | 50/60 Hz                                     |             | Hz         |                  |  |  |
|                                |             |                 |                                              | 130 W (     | max)       |                  |  |  |
| CAPACITÉS DU SYSTÈME           |             |                 | CCP(Communication en champ proche) 13.56 Mhz |             |            |                  |  |  |

#### CAPACITÉS DU SYSTÈME

| CARACTÉRISTIQUES                     | Solo S™         |
|--------------------------------------|-----------------|
| Débit d'osmose inverse (L/h) à 20 °C | 3 à 25          |
| Résistivité (Mohm/cm à 25°C)         | 18,2            |
| Conductivité (µS/cm à 25 °C)         | 0,055           |
| Carbone organique total (ppb COT) ** | < 2             |
| Bactéries (UFC/100 ml) ***           | < 0,01 ufc/ml   |
| Particules (au filtre) ***           | < 0,2 um < 1 ml |
| Débit de distribution (L/min)        | jusqu'à 1,2     |
| ARNase *                             | < 1 pg/ml       |
| ADNase *                             | < 5 pg/ml       |
| PROTÉASE *                           | < 0,15 ug/ml    |


Avec le modèle TOC\*\*

Avec AvPOU01 ou AvPOU02\*\*\* Avec AvPOU01 ou AvPOU02\*\*\*

Avec AvPOU01\*

Avec AvPOU01\*

Avec AvPOU01\*



| ! | S1 | Électrovanne d'entrée                   | S4                                                             | Électrovanne de service du perméat | PT1 | Cartouche AvProtect01 | E1 | Pompe à flux croisé pour l'eau Ol | E6  | Capteur de température et de pression |
|---|----|-----------------------------------------|----------------------------------------------------------------|------------------------------------|-----|-----------------------|----|-----------------------------------|-----|---------------------------------------|
|   | S2 | Électrovanne de vidange de la boucle PW | nne de vidange de la boucle PW S5 Électrovanne de distribution |                                    | RO1 | Cartouche AvRO01      | E3 | Pompe à eau ultra-pure            | E7  | AvLED01 ou AvUV01                     |
| ! | S3 | Électrovanne de rinçage OI              | S6                                                             | Électrovanne de vidange OI         | D11 | Cartouche AvUltra01   | E4 | Cellule de résistivité            | E9  | Capteur de débit                      |
|   |    |                                         |                                                                |                                    | D12 | Cartouche AvUltra01   | E5 | Cellule de résistivité en boucle  | E10 | Cellule de conductivité du perméat    |



#### **Avidity Science LLC**

819 Bakke Avenue Waterford, WI, 53185 États-Unis

+1 262 534 5181

US.Info@AvidityScience.com www.AvidityScience.com

#### Avidity Science (Zhejiang), Co., Ltd

Bld F, No. 1332, WanGuo Road, EDZ, Jiaxing, Zhejiang, Chine

+86 400 699 2100

CN.Info@AvidityScience.com www.AvidityScience.com.cn

#### **Avidity Science Ltd**

Unit 1a, Drakes Park, Long Crendon Ind Est, Long Crendon, Buckinghamshire, HP18 9BA, Royaume-Uni

+44 (0)1844 201142

EMEA.Info@AvidityScience.com www.AvidityScience.com

#### Avidity Science, K.K.

Izumi Akasaka Building 6th Floor, 2-22-24 Akasaka Minato-ku, Tokyo

+81 (0)3 6277 8440

JP.Info@AvidityScience.com www.AvidityScience.co.jp

