

FastGene[®] PROBE One Step Mix

Product Description

Combining the the reverse transcription with a qPCR detection mix results in the optimal convenience protocol therefore lowering the risk of contamination by avoiding additional pipetting.

The reverse transcriptase implemented in this kit is a modified MuLV, engineered to fasten the process of turning the RNA to DNA. This enables a 10 min reverse trancsription rather than a 1 hour step using the wildtype enzyme.

Extensive research allowed us to create a buffer mixture optimal for the detection of multiple fluorophores within a mixture. This research also led to the development of buffer chemistries optimizied for earlier C_{τ} -values in a qPCR assay. Combining the earlier C_{τ} -values with the multiplex, the FastGene[®] Probe 2 x qPCR Universal Mix is perfect for qPCR assays using Probes.

Product Applications

FastGene® Probe qPCR Mixes ideally suited for:

- Multiplex RT-qPCR
- Gene expression analysis (absolute and relative)
- Detection of low copy genes
- Quantification of viral loads or NGS libraries

Limitation of Use

This product is for in vitro research only and not for clinical diagnostics.

Product Specifications

Shipping and Storage

Prolonged exposure to light must be avoided in order to not bleach the DNA dye. The mix is stable for 12 months at -20 °C and for at least 30 freeze thaw cycles. Freeze/ thaw cycles can be avoided by storing the mix at 4 °C. The kit will remain fully active for 1 month at 4 °C.

Primer design

Please verify the specificity of the primer pair by blasting the template's organism (Primer-BLAST: http://www.ncbi. nlm.nih.gov/tools/primer-blast/). The primers should amplify an amplicon with 80 – 200 bp. Do not exceed 400 bp. Extension and annealing time can reduced by amplification of smaller amplicons. Using the default settings of primer3 (http://frodo.wi.mit.edu/primer3/), the melting temperature should be 60 °C.

Technical Data Sheet

Kit Codes and Components

LS47SLRS	FastGene [®] PROBE One Step Mix Lo-ROX	10 rxns
LS4701LR	FastGene [®] PROBE One Step Mix Lo-ROX	100 rxns
LS4705LR	FastGene [®] PROBE One Step Mix Lo-ROX	500 rxns
LS47SHRS	FastGene [®] PROBE One Step Mix Hi-ROX	10 rxns
LS4701HR	FastGene® PROBE One Step Mix Hi-ROX	100 rxns
LS4705HR	FastGene [®] PROBE One Step Mix Hi-ROX	500 rxns
LS47SNRS	FastGene [®] PROBE One Step Mix No-ROX	10 rxns
LS47S01 NR	FastGene [®] PROBE One Step Mix No-ROX	100 rxns
LS47S05 NR	FastGene [®] PROBE One Step Mix No-ROX	500 rxns

Related Products

		10
LS43SLRS	FastGene [®] IC Green One Step Mix Lo-ROX	10 rxns
LS4301LR	FastGene® IC Green One Step Mix Lo-ROX	100 rxns
LS4305LR	FastGene [®] IC Green One Step Mix Lo-ROX	500 rxns
LS43SHRS	FastGene [®] IC Green One Step Mix Hi-ROX	10 rxns
LS4301HR	FastGene [®] IC Green One Step Mix Hi-ROX	100 rxns
LS4305HR	FastGene [®] IC Green One Step Mix Hi-ROX	500 rxns

Quick Notes

- FastGene[®] Probe 1-Step RT-qPCR Kit can replace any commercial Probe based qPCR mixture. The annealing temperature may need to be optimized to account for differences in buffer formulation.
- FastGene[®] Probe 1-Step RT-qPCR Kit has been optimized for multiplex qPCR
- FastGene[®] Probe 1-Step RT-qPCR Kit comes as Lo-ROX or Hi-ROX mix

Contact & Support

NIPPON Genetics EUROPE Mariaweilerstraße 28-30 52349 Düren Germany

For information on product use limitations and licenses: http://nippongenetics.eu/contact/terms/

For technical support please contact: support@nippongenetics.eu

FastGene® PROBE One Step Mix

Step 1: Prepare the PCR master mix

- Ensure that all reagents are properly thawed and mixed.
- Prepare a PCR master mix containing the appropriate volume of all reaction components common to all or a subset of the reactions to be performed.
- Calculate the required volumes of each component based on the following table:

Component	20 µl rxn	Final conc.
PCR-grade water	Up to 20 µl	N/A
2X FastGene® PROBE One Step Mix	10 µl	1X
20X FastGene® Scriptase	1 µl	1X
Probe (10µM)	0,4 µl	200 nM
Forward Primer (10 µM)	0.8 µl	400 nM
Reverse Primer (10 µM)	0.8 µl	400 nM
Template RNA	1 pg - 1 µg total RNA >0.01 pg mRNA	As required

Step 2: Set up individual reactions

- Transfer the appropriate volume of PCR master mix, template and primer to individual PCR tubes/wells or a PCR plate
- Cap or seal individual reactions, mix and centrifuge briefly.

Step 3: Run the PCR

• Perform PCR with the following cycling protocol:

Step	Temperature	Duration	Cycles	
Reverse Transcription	45 ℃	10 min	1	
Initial denaturation	95 °C	2 min ¹	1	
Denaturation	95 °C	5 sec	40	
Annealing & Elongation	60 - 65 °C	20 - 30 sec	40	
Melt analysis		only when usi dization probe		

 1 Initial denaturation for 2 min at 95 °C is recommended for most assays. For GC-rich targets (>65% GC), 5 min at 95 °C may be used.

 2 An annealing temperature 5 °C lower than the calculated melting temperature (T_m) of the primer set is recommended as a first approach. If low yields and/or nonspecific amplification is obtained, an annealing temperature gradient PCR is recommended to determine the optimal annealing temperature of the primer pair.

Technical Data Sheet

Instrument compatibility

The list below shows the ROX concentration requirement of some instruments:

High ROX concentration (500 nM)

Manufacturer	Model
ThermoFisher Scientific	7000, 7300, 7700, 7900, 7900HT, 7900HT FAST, StepOne™,
	StepOne™plus

Low ROX concentration (50 nM)

Manufacturer	Model
Agilent	MX3000P, MX3005P, MX4000P
Analytik Jena	qTower
Bio-Rad	CFX96, CFX 384, Chromo4, MiniOpticon, Opticon, Opticon™ 2
Cepheid	SmartCycler
Eppendorf	Mastercycler ep realplex, Mastercycler ep realplex 2S
Fluidigm	BioMark
Hain Lifesciences	FluoroCycler [®] 96
Qiagen	RotorGene™ 3000, RotorGene™ 6000, RotorGene™ Q
Takara	Thermal Cycler Dice®(TP800)
Techne	PrimeQ, Quantica
ThermoFisher Scientific	7500, 7500 FAST, Piko Real®, QuantStudio™12k Flex, ViiA7™

No ROX concentration

Manufacturer	Model
PCR ^{max}	Eco™ 48
Roche	LightCycler® 480, LightCycler® 96, LightCycler® Nano