

DISCO TAQ 2X MASTER MIX, 2 MM MGCL₂, READY TO LOAD

Cat. No.: 257570

2500 Reactions

-	Disco Taq 2x Master Mix, 2 mM MgCl₂, Ready to Load
ID No.	CL1.250-0027
Cap colour	Purple
Content	50 x 1.25 ml

Key Features

Disco Taq 2x Master Mix, Ready to Load is a ready-to-use 2x reaction mix with the Disco Taq, the $\mathrm{NH_4}^+$ buffer system, dNTPs and magnesium chloride present. Each reaction requires 25 μl of the 2x Master Mix, Ready to Load. Simply add primers, template and water to a total reaction volume of 50 μl to successfully carry out primer extensions and other molecular biology applications.

Disco Taq 2x Master Mix, Ready to Load offers several advantages. Set up time is significantly reduced. The chance of contaminating component stocks is eliminated. Reduction of reagent handling steps leads to better reproducibility. Standard tests can be set up with the confidence that results will be consistent every time.

There is no need to buy and use separate loading dyes. Simply load a portion of the reaction product onto an agarose gel for electrophoresis and subsequent visualization. The red dye front runs at 1000 - 2000 bp on a 0.5 - 1.5% agarose gel.

Composition of the Disco Taq 2x Master Mix, 2 mM MgCl₂, Ready to Load

- Tris-HCl pH 8.5, (NH₄)₂SO₄, 4 mM MgCl₂, 0.2% Tween[®] 20
- 0.4 mM of each dNTP
- Disco Taq
- Inert red dye and stabilizer

Recommended Storage and Stability

Long term storage at -20 $^{\circ}\text{C}.$ Product expiry at -20 $^{\circ}\text{C}$ is stated on the label.

Option: Store at +4 °C for up to 6 months.

Quality Control

Disco Taq is tested for contaminating activities, with no traces of endonuclease activity, nicking activity or exonuclease activity.

Protocol

This protocol serves as a guideline to ensure optimal PCR results when using Disco Taq 2x Master Mix, Ready to Load. Optimal reaction conditions such as incubation times, temperatures, and amount of template DNA may vary and must be determined individually.

- Thaw Taq 2x Master Mix, Ready to Load and primers. It is important to thaw the solutions completely and mix thoroughly before use to avoid localized concentrations of salts. Keep all components on ice.
- 2. Prepare a reaction mix. Table 1 shows the reaction set up for a final volume of 50 μ L. If desired, the reaction size may be scaled down. Use 10 μ l of the Taq 2x Master Mix, Ready to Load in a final volume of 20 μ l.

Table 1. Reaction components (reaction mix and template DNA)

Component	Vol./reaction*	Final concentration*
Taq 2x Master Mix	25 μΙ	1x
25 mM MgCl ₂	0 μl (0 – 5 μl)	2 mM (2 – 4.5 mM)
Primer A (10 μM)	1 μΙ (0.5 – 5 μΙ)	0.2 μΜ (0.1 – 1.0 μΜ)
Primer B (10 μM)	1 μΙ (0.5 – 5 μΙ)	0.2 μΜ (0.1 – 1.0 μΜ)
PCR-grade H₂O	ΧμΙ	-
Template DNA	Χ μΙ	genomic DNA: 50 ng (10 – 500 ng) plasmid DNA: 0.5 ng (0.1 – 1 ng) bacterial DNA: 5 ng (1 – 10 ng)
TOTAL volume	50 μΙ	-

^{*} Suggested starting conditions; theoretically used conditions in brackets

- 3. Mix the reaction mix thoroughly and dispense appropriate volumes into reaction tubes. Mix gently, e.g. by pipetting the reaction mix up and down a few times.
- Add template DNA to the individual tubes containing the reaction mix.
- Program the thermal cycler according to the manufacturer's instructions. See table 2 for an example.
 For maximum yield and specificity, temperatures and cycling times should be optimized for each new template target or primer pair.
- 6. Place the tubes in the thermal cycler and start the reaction.
- 7. At the end of the run, simply load a portion of the reaction product (e.g. $10~\mu$ l) onto an agarose gel for analysis.

Table 2. Three-step PCR program

Cycles	Duration of cycle	Temperature
1	2 – 5 minutes	95 ℃
25 - 35	20 – 30 seconds ^a	95 ℃
	20 – 40 seconds ^b	50 – 65 °C
	30 seconds ^c	72 °C
1	5 minutes ^d	72 °C

^{a-} Denaturation step: This step is the first regular cycling event and consists of heating the reaction to 95 °C for 20 – 30 seconds. It causes melting of the DNA template by disrupting the hydrogen bonds between complementary bases, yielding single-stranded DNA molecules.

^{b.} Annealing step: The reaction temperature is lowered to 50-65 °C for 20-40 seconds allowing annealing of the primers to the single-

stranded DNA template. Typically, the annealing temperature is about $3-5\,^\circ\text{C}$ below the T_m (melting temperature) of the primers used.

- Extension/elongation step: Taq polymerase has its optimum activity temperature at 72 °C. At this step the DNA polymerase synthesizes a new DNA strand complementary to the DNA template strand. The extension time depends on the length of the DNA fragment to be amplified. As a rule of thumb, at its optimum temperature the DNA polymerase will polymerize a thousand bases per minute.
- d. Final elongation: This single step is occasionally performed at a temperature of 72 °C for 5 minutes after the last PCR cycle to ensure that any remaining single-stranded DNA is fully extended.

Notes:

The final MgCl₂ concentration of this 2x Taq Master Mix, Ready to Load is 2 mM. In some applications, more than 2 mM MgCl₂ is required for best results. Use 25 mM MgCl₂ to adjust the Mg²⁺ concentration according to table 3.

Table 3. Additional volume (μl) of MgCl₂ per 50 μl reaction:

Final MgCl ₂ conc. in reaction (mM)	2.0	2.5	3.0	3.5	4.0	4.5
Volume of 25 mM MgCl ₂	0	1	2	3	4	5

For Research Use Only. Not for use in diagnostics procedures.

Other product sizes, combinations and customized solutions are available. Please look at www.dutscher.com or ask for our complete product list for PCR Enzymes. For customized solutions please contact us.

Made in Europe

Issued 01/2023