Q **Sepharose** XL SP **Sepharose** XL

ION EXCHANGE CHROMATOGRAPHY

Q Sepharose[™] XL and SP Sepharose XL ion exchange chromatography resins are specially designed for use in packed beds to capture biomolecules from clarified feed-stocks. The high loading capacities of the resins, combined with high throughput, can increase the productivity of manufacturing operations. In addition, Q and SP Sepharose XL belong to the BioProcess[™] resin family and are fully documented and supported to meet the demands of downstream processing including regulatory support files, recommended columns, and packing procedures.

- Capture biomolecules directly from clarified feed-stocks for effective initial purification
- High dynamic binding capacity
- Easy scale-up to production
- Belong to bioprocess resin family for performance and support to match their use in industrial downstream processing

Ion exchange chromatography

lon exchange chromatography is probably the most frequently used and versatile method for fractionating proteins and peptides, even those with small differences in charge. Furthermore, binding and elution conditions are easy to optimize, resulting in fast separations that are reproducible and cost-effective to scale up.

The technique is based on reversible interactions between charged molecules and immobilized ion exchange groups of opposite charge. The charged molecules bind to the separation resin at low ionic strength and are then eluted with a salt or pH gradient. Continuous gradient elution is most often used when good resolution is needed, while simple stepwise gradient elution is employed for sample preparation, group separation, or concentration.

 $\ensuremath{\mbox{Fig}}$ 1. Q Sepharose XL and SP Sepharose XL resins combine high binding capacity with good resolution.

Resin characteristics

Long chains of dextran are coupled to a cross-linked agarose matrix. The stable agarose matrix and long, flexible chains of dextran with bound charged groups work together to increase loading capacity while allowing high flow rates.

The dextran greatly increases the exposure of target molecules to the Q or SP charged groups. The long dextran molecules are flexible enough to allow passage of charged protein molecules. The overall result is increased loading capacity (up to 10-fold higher than conventional Sepharose Fast Flow ion exchange resins). With their high loading capacities and excellent physical and chemical stability, they are well-suited to use in the capture step of a downstream process that is characterized by large loads of crude samples.

Q Sepharose XL has been shown to have excellent selectivity and capacity for viruses and in particular adenoviruses, an important vector for gene therapy.

Q Sepharose XL and SP Sepharose XL resins use only biocompatible materials well-documented in commercial production.

Sepharose XL is based on a cross-linked, spherical agarose particle similar to the well established Q and SP Sepharose Fast Flow resins. Dextran chains are covalently coupled to the agarose matrix. Strong Q and SP ion exchange groups are attached to the dextran through chemically stable ether bonds.

Tables 1 and 2 list the main characteristics of Q and SP Sepharose XL.

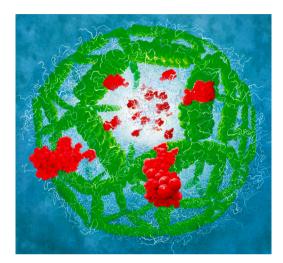


Fig 2. An artist's impression of protein molecules binding to an XL ion exchanger.

Table 1. Characteristics of Q Sepharose XL

Matrix	Cross-linked agarose, with dextran surface extender, spherical
Type of ion exchanger	Strong anion
Ionic capacity	0.18 to 0.26 mmol Cl ⁻ /mL resin
Particle size, d _{50V} ¹	~ 90 µm
Chemical stability	Stable to commonly used aqueous buffers, 1.0 M NaOH ² , 20% ethanol, 6 M guanidine hydrochloride
pH stability, operational ³	2 to 12
pH stability, CIP⁴	2 to 14
pH ligand fully charged⁵	Entire pH range
Recommended operating flow velocity	200 cm/h ⁶
Dynamic binding capacity, Q_{B10}^{7}	≥ 160 mg BSA/mL resin
Temperature stability	4°C to 30°C
Avoid	Oxidizing agents, anionic detergents
Storage	20% ethanol, 4°C to 30°C

¹ Median particle size of the cumulative volume distribution

 $^{\rm 2}$ 1.0 M NaOH should only be used for cleaning purposes

³ pH range where resin can be operated without significant change in function

⁴ pH range where resin can be subjected to cleaning- or sanitization-in-place without significant change in function

⁵ pH range where ligand is fully charged: although the ligand is fully charged throughout the range stated, only use the resin within the stated stability ranges.

⁶ 18 cm diameter, 20 cm bed height, at room temperature using buffers with the same viscosity as water

⁷ Dynamic binding capacity at 10% breakthrough by frontal analysis at a mobile phase velocity of

300 cm/h in a PEEK 7.5/100 column at 10 cm bed height (2 min residence time) for BSA in 50 mM Tris-HCl, pH 7.5

Table 2. Characteristics of SP Sepharose XL.

Matrix	Cross-linked agarose, with dextran surface extender, spherical
Type of ion exchanger	Strong cation
lonic capacity	0.18 to 0.25 mmol H ⁺ /mL resin
Particle size, d _{50V} ¹	~ 90 µm
Chemical stability	Stable to commonly used aqueous buffers, 1.0 M NaOH ² , 20% ethanol, 6 M guanidine hydrochloride
pH stability, operational ³	4 to 13
pH stability, CIP⁴	3 to 14
pH ligand fully charged⁵	Entire pH range
Recommended operating flow velocity	200 cm/h ⁶
Dynamic binding capacity, Q_{B10}^{7}	≥ 160 mg lysozyme/mL resin
Temperature stability	4°C to 30°C
Avoid	Oxidizing agents, cationic detergents, long exposure to pH < 4
Storage	0.2 M sodium acetate in 20% ethanol, 4°C to 30°C

¹ Median particle size of the cumulative volume distribution

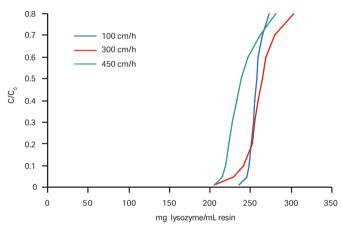
 $^{\rm 2}$ 1.0 M NaOH should only be used for cleaning purposes

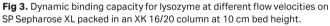
 $^{^{\}scriptscriptstyle 3}\,\text{pH}$ range where resin can be operated without significant change in function

 $^{^{\}rm 4}\,\rm pH$ range where resin can be subjected to cleaning- or sanitization-in-place without significant change in function

⁵ pH range where ligand is fully charged; although the ligand is fully charged throughout the range stated, only use the resin within the stated stability ranges.

⁶ 18 cm diameter, 20 cm bed height, at room temperature using buffers with the same viscosity as water ⁷ Dynamic binding capacity at 10% breakthrough by frontal analysis at a mobile phase velocity of 300 cm/h in a PEEK 7.5/100 column at 10 cm bed height (2 min residence time) for lysozyme in 50 mM glycine-NaOH, pH 9


High loading capacity


Q Sepharose XL and SP Sepharose XL expose charged groups in an optimized fashion for binding of target molecules. Thus, the dynamic binding capacity of Q and SP Sepharose XL is very high.

Figures 3 and 4 show breakthrough curves for SP Sepharose XL at different flow velocities and bed heights. As expected, increased bed height gives steeper breakthrough curves and capacity, while increased flow velocity reduces capacity.

High resolution at high loading

The high binding capacities of Q Sepharose XL and SP Sepharose XL is combined with good resolution. Figure 5 shows that increasing sample load up to 10% of the breakthrough capacity has little effect on the resolution of the three peaks. The selectivities of Q and SP Sepharose XL are similar to the corresponding Sepharose Big Beads and Sepharose Fast Flow resins. The similarity can speed up method development on Sepharose XL ion exchangers.

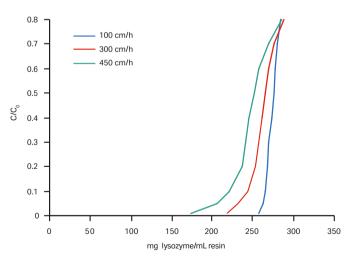


Fig 4. Dynamic binding capacity for lysozyme at different flow velocities on SP Sepharose XL packed in an XK 16/20 column at 15 cm bed height.

Fig 5. Separation of ribonuclease, cytochrome C, and lysozyme on SP Sepharose XL. Increasing sample loading up to 10% has little effect on resolution. At 30% the peaks are broader, but still with acceptable resolution.

High chemical and mechanical stabilities give flexibility and long working life

Q Sepharose XL and SP Sepharose XL have high chemical stability and can be used over a wide pH range. The flexibility offers considerable freedom when choosing adsorption and elution conditions, which helps in optimizing the separation. In addition, effective cleaning and sanitization procedures can be applied, which extend the working life of the resins and increase the overall process economy.

Operation

Scale-up

Start by optimizing the separation at laboratory scale, and then scale up the process by keeping the flow velocity and sample-tobed volume ratio constant, and increasing the column diameter. Typical bed heights range from 5 to 15 cm.

Equipment

Q Sepharose XL and SP Sepharose XL can be used with most equipment available for chromatography, from laboratory to production scale. Table 3 lists recommended columns available from Cytiva.

Table 3. Recommended columns for Q and SP Sepharose XL

Column	Inner diameter (mm)	Bed volume	Bed height (cm)
Lab scale:			
Tricorn™	5 to 10	up to 24 mL	up to 30
HiScale™	16 to 50	up to 785 mL	up to 40
ХК	16 to 50	up to 559 mL	up to 28
Production scale:			
AxiChrom™	50 to 200	0.6 to 9.4 L	30
	300 to 1000	21 to 236 L	30
BPG 100/500	100	up to 2.4 L	max. 30
BPG 200/500	200	up to 9.4 L	max. 30
BPG 300/500	300	up to 21 L	max. 30
BPG 450/500	450	up to 43 L	max. 27
Chromaflow™ V400/100-300	400	37 L	30
Chromaflow V600/100-300	600	84 L	30
Chromaflow V800/100-300	800	150 L	30
Chromaflow ¹ V1000/100-300	1000	236 L	30

¹ Chromaflow columns are available in larger diameters, please contact your Cytiva representative for information.

Recommendations for packing, method design and optimization, and cleaning and sanitization of Q Sepharose XL and SP Sepharose XL are included in instructions for each resin.

Applications

Purification of recombinant α -amylase from *E. coli*

Recombinant α -amylase (M_r 50 000) was produced in *E. coli*. After homogenization, a purification method was developed on Q Sepharose XL and scaled up to pilot level.

The first step of method development was to determine optimal pH. This was performed by method scouting in an XK 16/20 column run on ÄKTA[™] chromatography system. Scouting between pH 6 and 9 revealed that pH 8 was the optimum.

Scouting on ÄKTAexplorer was also used to determine maximum loading. The homogenized starting material was diluted to a conductivity below 10 mS/cm. To increase binding capacity for the target protein, 10 mM CaCl₂ was added to precipitate DNA. Breakthrough curves were generated with increasing amounts of starting material until α -amylase was detected in the flowthrough.

Loading was reduced to 75% of the maximum capacity and verified before the method was scaled up to an INdEX 70 column.

The specific activities of α -amylase in the eluates from the XK 16/20 and INdEX 70 columns were 6180 and 6420 U/L respectively. Recoveries were approximately 60%. (Note that methods used to determine the protein content of crude feedstocks are known to give rather unreliable results, which may explain this low recovery.)

Capture: the initial purification step

A chromatographic process for purifying a biomolecule can be divided into three stages: capture, intermediate purification, and polishing. Each has its own goals. The goal of the capture step is initial concentration and purification of the molecule of interest from crude or clarified feedstock. Ion exchange is a technique well suited for capture.

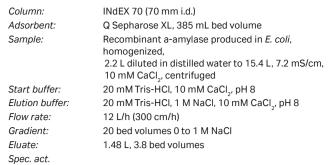

As the feedstock might contain high levels of impurities including proteases, high loading and throughput are needed for rapid processing and product stabilization prior to the intermediate purification step.

Figure 5 shows the chromatogram of the pilot scale separation. Table 4 shows the DNA content of different fractions from the separation. Note that most of the DNA elutes after α -amylase and that relatively little is found in the α -amylase peak. The result illustrates that the ion exchange separation on Q Sepharose XL reduces the amount of DNA in the fraction containing the target protein.

Figure 6 illustrates the purity of α -amylase captured at pilot scale.

Table 4. DNA content in fractions from purification of $\alpha\mathchar`-amylase$ on Q Sepharose XL in an INdEX 70 column

Fraction	ng DNA/µL
Starting material	44
Flowthrough	21.5
1^{st} peak (containing α -amylase)	10
2 nd peak	117

α-amylase: 6420 U/L

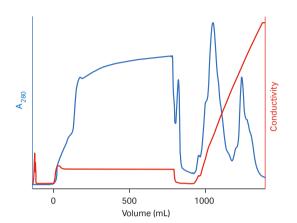
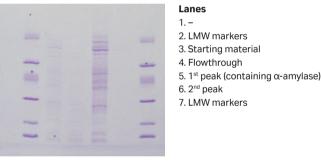



Fig 5. Pilot scale capture of recombinant α-amylase from E. coli on Q Sepharose XL.

1 2 3 4 5 6 7 **Fig 6.** SDS-PAGE (reduced, Coomassie[™] Brilliant Blue staining) of starting material and eluted fractions from the capture of *E. coli* recombinant

BioProcess resins: resins made for bioprocessing

α-amylase on Q Sepharose XL.

BioProcess resins are a specially selected range of chromatography resins developed and supported for production-scale chromatography. All resins are produced following validated methods and are tested to make sure that they meet the performance requirements of the manufacturing industry. Regulatory support files contain information to assist process validation and submissions to regulatory authorities. BioProcess resins cover all purification steps, from capture to polishing.

Ordering information

Product	Quantity	Product code
Q Sepharose XL ¹	300 mL	17507201
	5 L	17507204
	10 L	17507205
	60 L ²	17507260
SP Sepharose XL ³	300 mL	17507301
	5 L	17507304
	10 L	17507305
	60 L ¹	17507360

 $^{\scriptscriptstyle 1}\,$ Q Sepharose XL is supplied as a suspension in 20% ethanol

² Pack size available upon request

³ SP Sepharose XL is supplied as a suspension in 20% ethanol and 0.2 M sodium acetate

Related products

HiTrap™ Q XL	5 × 1 mL	17515801
	5 × 5 mL	17515901
HiTrap SP XL	5 × 1 mL	17516001
	5 × 5 mL	17516101

Empty columns

Column¹

ooranni	
HiScale 16/20	28964441
HiScale 16/40	28964424
HiScale 26/20	28964514
HiScale 26/40	28964513
HiScale 50/20	28964445
HiScale 50/40	28964444

¹ Each HiScale column is delivered with two adapters

Related literature

Data File	
Axichrom columns	28929041
Handbook	
Ion Exchange Chromatography, Principles and Methods	18111421
Selection guides	
lon exchange columns and media	18112731
Prepacked chromatography columns for ÄKTA systems	28931778

cytiva.com/bioprocess

Cytiva and the Drop logo are trademarks of Global Life Sciences IP Holdco LLC or an affiliate. ÄKTA, AxiChrom, BioProcess, Chromaflow, HiScale, HiTrap, Sepharose, and Tricorn are trademarks of Global Life Sciences Solutions USA LLC or an affiliate doing business as Cytiva. Coomassie is a registered trademark of Thermo Fisher Scientific. All other

third party trademarks are the property of their respective owners. © 2020 Cytiva

All goods and services are sold subject to the terms and conditions of sale of the supplying company operating within the Cytiva business. A copy of those terms and conditions is available on request. Contact your local Cytiva representative for the most current information. For local office contact information, visit cytiva.com/contact

CY13335-17Jul20-DF

